Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Oncoimmunology ; 13(1): 2326694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481728

RESUMO

Pancreatic cancer is characterized by extreme therapeutic resistance. In pancreatic cancers harboring high-risk genomes, we describe that cancer cell-neutrophil signaling circuitry provokes neutrophil-derived transmembrane (tm)TNF-TNFR2 interactions that dictate inflammatory polarization in cancer-associated fibroblasts and T-cell dysfunction - two hallmarks of therapeutic resistance. Targeting tmTNF-TNFR2 signaling may sensitize pancreatic cancer to chemo±immunotherapy.


Assuntos
Neoplasias Pancreáticas , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa , Transdução de Sinais
2.
Front Immunol ; 14: 1225704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662920

RESUMO

The tumor necrosis factor (TNF) receptor superfamily is a structurally and functionally related group of cell surface receptors that play crucial roles in various cellular processes, including apoptosis, cell survival, and immune regulation. This review paper synthesizes key findings from recent studies, highlighting the importance of clustering in TNF receptor superfamily signaling. We discuss the underlying molecular mechanisms of signaling, the functional consequences of receptor clustering, and potential therapeutic implications of targeting surface structures of receptor complexes.


Assuntos
Receptores do Fator de Necrose Tumoral , Transdução de Sinais , Receptores do Fator de Necrose Tumoral/genética , Análise por Conglomerados , Membrana Celular , Apoptose
3.
JAMA Netw Open ; 6(5): e2314336, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204792

RESUMO

Importance: The BCG vaccine-used worldwide to prevent tuberculosis-confers multiple nonspecific beneficial effects, and intravesical BCG vaccine is currently the recommended treatment for non-muscle-invasive bladder cancer (NMIBC). Moreover, BCG vaccine has been hypothesized to reduce the risk of Alzheimer disease and related dementias (ADRD), but previous studies have been limited by sample size, study design, or analyses. Objective: To evaluate whether intravesical BCG vaccine exposure is associated with a decreased incidence of ADRD in a cohort of patients with NMIBC while accounting for death as a competing event. Design, Setting, and Participants: This cohort study was performed in patients aged 50 years or older initially diagnosed with NMIBC between May 28, 1987, and May 6, 2021, treated within the Mass General Brigham health care system. The study included a 15-year follow-up of individuals (BCG vaccine treated or controls) whose condition did not clinically progress to muscle-invasive cancer within 8 weeks and did not have an ADRD diagnosis within the first year after the NMIBC diagnosis. Data analysis was conducted from April 18, 2021, to March 28, 2023. Main Outcomes and Measures: The main outcome was time to ADRD onset identified using diagnosis codes and medications. Cause-specific hazard ratios (HRs) were estimated using Cox proportional hazards regression after adjusting for confounders (age, sex, and Charlson Comorbidity Index) using inverse probability scores weighting. Results: In this cohort study including 6467 individuals initially diagnosed with NMIBC between 1987 and 2021, 3388 patients underwent BCG vaccine treatment (mean [SD] age, 69.89 [9.28] years; 2605 [76.9%] men) and 3079 served as controls (mean [SD] age, 70.73 [10.00] years; 2176 [70.7%] men). Treatment with BCG vaccine was associated with a lower rate of ADRD (HR, 0.80; 95% CI, 0.69-0.99), with an even lower rate of ADRD in patients aged 70 years or older at the time of BCG vaccine treatment (HR, 0.74; 95% CI, 0.60-0.91). In competing risks analysis, BCG vaccine was associated with a lower risk of ADRD (5-year risk difference, -0.011; 95% CI, -0.019 to -0.003) and a decreased risk of death in patients without an earlier diagnosis of ADRD (5-year risk difference, -0.056; 95% CI, -0.075 to -0.037). Conclusions and Relevance: In this study, BCG vaccine was associated with a significantly lower rate and risk of ADRD in a cohort of patients with bladder cancer when accounting for death as a competing event. However, the risk differences varied with time.


Assuntos
Demência , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Masculino , Humanos , Idoso , Feminino , Vacina BCG/uso terapêutico , Adjuvantes Imunológicos , Estudos de Coortes , Administração Intravesical , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Demência/epidemiologia , Demência/tratamento farmacológico
4.
PLoS One ; 18(1): e0276423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662841

RESUMO

BACKGROUND: Diabetes is a common disease marked by high blood sugars. An earlier clinical trial in type 1 diabetic subjects (T1Ds) found that repeat BCG vaccinations succeeded in lowering HbA1c values over a multi-year course. Here we seek to determine whether BCG therapy for bladder cancer may improve blood sugar levels in patients with comorbid T1D and type 2 diabetes (T2D). We also investigate whether BCG exposure may reduce onset of T1D and T2D by examining country-by-country impact of BCG childhood vaccination policies in relation to disease incidence. METHODS AND FINDINGS: We first analyzed three large US patient datasets (Optum Labs data [N = 45 million], Massachusetts General Brigham [N = 6.5 million], and Quest Diagnostics [N = 263 million adults]), by sorting out subjects with documented T1D (N = 19) or T2D (N = 106) undergoing BCG therapy for bladder cancer, and then by retrospectively assessing BCG's subsequent year-by-year impact on blood sugar trends. Additionally, we performed an ecological analysis of global data to assess the country-by-country associations between mandatory neonatal BCG vaccination programs and T1D and T2D incidence. Multi-dose BCG therapy in adults with comorbid diabetes and bladder cancer was associated with multi-year and stable lowering of HbA1c in T1Ds, but not in T2Ds. The lack of a similar benefit in T2D may be due to concurrent administration of the diabetes drug metformin, which inhibits BCG's beneficial effect on glycolysis pathways. Countries with mandatory neonatal BCG vaccination policies had a lower incidence of T1D in two international databases and a lower incidence of T2D in one of the databases. CONCLUSIONS: The epidemiological evidence analyzed here suggests that BCG may play a role in the prevention of T1D. It does not support prevention of T2D, most likely because of interference by metformin. Our ecological analysis of global data suggests a role for neonatal BCG in the prevention of T1D and, to a lesser extent, T2D. Randomized clinical trials are needed to confirm these findings.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Metformina , Neoplasias da Bexiga Urinária , Adulto , Humanos , Recém-Nascido , Vacina BCG/uso terapêutico , Glicemia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Hemoglobinas Glicadas , Metformina/uso terapêutico , Estudos Retrospectivos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/prevenção & controle
5.
Cell Oncol (Dordr) ; 46(1): 167-177, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369606

RESUMO

BACKGROUND: TNFR2 expression is a characteristic of highly potent immunosuppressive tumor infiltrating CD4+Foxp3+ regulatory T cells (Tregs). There is compelling evidence that TNF through TNFR2 preferentially stimulates the activation and expansion of Tregs. We and others, therefore, proposed that targeting TNFR2 may provide a novel strategy in cancer immunotherapy. Several studies have shown the effect of TNFR2 antagonistic antibodies in different tumor models. However, the exact action of the TNFR2 antibody on Tregs remained understood. METHOD: TY101, an anti-murine TNFR2 antibody, was used to examine the effect of TNFR2 blockade on Treg proliferation and viability in vitro. The role of TNFR2 on Treg viability was further validated by TNFR2 knockout mice and in the TY101 antagonistic antibody-treated mouse tumor model. RESULTS: In this study, we found that an anti-mouse TNFR2 antibody TY101 could inhibit TNF-induced proliferative expansion of Tregs, indicative of an antagonistic property. To examine the effect of TY101 antagonistic antibody on Treg viability, we treated unfractionated lymph node (L.N.) cells with Dexamethasone (Dex) which was known to induce T cell death. The result showed that TY101 antagonistic antibody treatment further promoted Treg death in the presence of Dex. This led us to find that TNFR2 expression was crucial for the survival of Tregs. In the mouse EG7 lymphoma model, treatment with TY101 antagonistic antibody potently inhibited tumor growth, resulting in complete regression of the tumor in 60% of mice. The treatment with TY101 antagonistic antibody elicited potent antitumor immune responses in this model, accompanied by enhanced death of Tregs. CONCLUSION: This study, therefore, provides clear experimental evidence that TNFR2 antagonistic antibody, TY101, can promote the death of Tregs, and this effect may be attributable to the antitumor effect of TNFR2 antagonistic antibody.


Assuntos
Neoplasias , Linfócitos T Reguladores , Animais , Camundongos , Linfócitos T Reguladores/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição Forkhead/metabolismo
7.
Sci Adv ; 8(46): eabq7240, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383663

RESUMO

The BCG (Bacille Calmette-Guérin) vaccine, introduced 100 years ago for tuberculosis prevention, has emerging therapeutic off-target benefits for autoimmunity. In randomized controlled trials, BCG vaccinations were shown to gradually improve two autoimmune conditions, type 1 diabetes (T1D) and multiple sclerosis. Here, we investigate the mechanisms behind the autoimmune benefits and test the hypothesis that this microbe synergy could be due to an impact on the host T cell receptor (TCR) and TCR signal strength. We show a quantitative TCR defect in T1D subjects consisting of a marked reduction in receptor density on T cells due to hypermethylation of TCR-related genes. BCG corrects this defect gradually over 3 years by demethylating hypermethylated sites on members of the TCR gene family. The TCR sequence is not modified through recombination, ruling out a qualitative defect. These findings support an underlying density defect in the TCR affecting TCR signal strength in T1D.

8.
Cell Rep Med ; 3(9): 100728, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36027906

RESUMO

There is a need for safe and effective platform vaccines to protect against coronavirus disease 2019 (COVID-19) and other infectious diseases. In this randomized, double-blinded, placebo-controlled phase 2/3 trial, we evaluate the safety and efficacy of a multi-dose Bacillus Calmette-Guérin (BCG) vaccine for the prevention of COVID-19 and other infectious disease in a COVID-19-unvaccinated, at-risk-community-based cohort. The at-risk population is made of up of adults with type 1 diabetes. We enrolled 144 subjects and randomized 96 to BCG and 48 to placebo. There were no dropouts over the 15-month trial. A cumulative incidence of 12.5% of placebo-treated and 1% of BCG-treated participants meets criteria for confirmed COVID-19, yielding an efficacy of 92%. The BCG group also displayed fewer infectious disease symptoms and lesser severity and fewer infectious disease events per patient, including COVID-19. There were no BCG-related systemic adverse events. BCG's broad-based infection protection suggests that it may provide platform protection against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other pathogens.


Assuntos
COVID-19 , Doenças Transmissíveis , Diabetes Mellitus Tipo 1 , Mycobacterium bovis , Adulto , Vacina BCG/uso terapêutico , COVID-19/prevenção & controle , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , SARS-CoV-2 , Vacinação
9.
Cells ; 11(12)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35741080

RESUMO

The appreciation that cancer growth is promoted by a dynamic tumor microenvironment (TME) has spawned novel approaches to cancer treatment. New therapies include agents that activate quiescent T effector cells and agents that interfere with abnormal neovascularity. Although promising, many experimental therapies targeted at the TME have systemic toxicity. Another approach is to target the TME with greater specificity by taking aim at the tumor necrosis factor receptor 2 (TNFR2) signaling pathway. TNFR2 is an attractive molecular target because it is rarely expressed in normal tissues (thus, has low potential for systemic toxicity) and because it is overexpressed on many types of cancer cells as well as on associated TME components, such as T regulatory cells (Tregs), tumor-associated macrophages, and other cells that facilitate tumor progression and spread. Novel therapies that block TNFR2 signaling show promise in cell culture studies, animal models, and human studies. Novel antibodies have been developed that expressly kill only rapidly proliferating cells expressing newly synthesized TNFR2 protein. This review traces the origins of our understanding of TNFR2's multifaceted roles in the TME and discusses the therapeutic potential of agents designed to block TNFR2 as the cornerstone of a TME-specific strategy.


Assuntos
Neoplasias , Receptores Tipo II do Fator de Necrose Tumoral , Animais , Imunoterapia , Neoplasias/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Linfócitos T Reguladores , Microambiente Tumoral
10.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053388

RESUMO

Here, we hypothesize that, in biological systems such as cell surface receptors that relay external signals, clustering leads to substantial improvements in signaling efficiency. Representing cooperative signaling networks as planar graphs and applying Euler's polyhedron formula, we can show that clustering may result in an up to a 200% boost in signaling amplitude dictated solely by the size and geometry of the network. This is a fundamental relationship that applies to all clustered systems regardless of its components. Nature has figured out a way to maximize the signaling amplitude in receptors that relay weak external signals. In addition, in cell-to-cell interactions, clustering both receptors and ligands may result in maximum efficiency and synchronization. The importance of clustering geometry in signaling efficiency goes beyond biological systems and can inform the design of amplifiers in nonbiological systems.


Assuntos
Redes Reguladoras de Genes , Transdução de Sinais , Animais , Análise por Conglomerados , Humanos
12.
Vaccine ; 40(11): 1540-1554, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33933315

RESUMO

BACKGROUND: A recent epigenome-wide association study of genes associated with type 2 diabetics (T2D), used integrative cross-omics analysis to identify 22 abnormally methylated CpG sites associated with insulin and glucose metabolism. Here, in this epigenetic analysis we preliminarily determine whether the same CpG sites identified in T2D also apply to type 1 diabetes (T1D). We then determine whether BCG vaccination could correct the abnormal methylation patterns, considering that the two diseases share metabolic derangements. METHODS: T1D (n = 13) and control (n = 8) subjects were studied at baseline and then T1D subjects studied yearly for 3 years after receiving BCG vaccinations in a clinical trial. In this biomarker analysis, methylation patterns were evaluated on CD4+ T-lymphocytes from baseline and yearly blood samples using the human Illumina Methylation EPIC Bead Chip. Methylation analysis combined with mRNA analysis using RNAseq. RESULTS: Broad but not complete overlap was observed between T1D and T2D in CpG sites with abnormal methylation. And in the three-year observation period after BCG vaccinations, the majority of the abnormal methylation sites were corrected in vivo. Genes of particular interest were related to oxidative phosphorylation (CPT1A, LETM1, ABCG1), to the histone lysine demethylase gene (KDM2B), and mTOR signaling through the DDIT4 gene. The highlighted CpG sites for both KDM2B and DDIT4 genes were hypomethylated at baseline compared to controls; BCG vaccination corrected the defect by hypermethylation. CONCLUSIONS: Glycolysis is regulated by methylation of genes. This study unexpectedly identified both KDM2B and DDIT4 as genes controlling BCG-driven re-methylation of histones, and the activation of the mTOR pathway for facilitated glucose transport respectively. The BCG effect at the gene level was confirmed by reciprocal mRNA changes. The DDIT4 gene with known inhibitory role of mTOR was re-methylated after BCG, a step likely to allow improved glucose transport. BCGs driven methylation of KDM2B's site should halt augmented histone activity, a step known to allow cytokine activation and increased glycolysis.


Assuntos
Vacina BCG , Glicemia/metabolismo , Diabetes Mellitus Tipo 1 , Proteínas de Ligação ao Cálcio , Ilhas de CpG , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Epigênese Genética , Humanos , Proteínas de Membrana/genética , Vacinação
13.
Int Immunopharmacol ; 101(Pt A): 108345, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34794079

RESUMO

Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) promote tumor immune evasion and thus targeting of Tregs has become an strategy in cancer immunotherapy. Tumor necrosis factor receptor 2 (TNFR2) is highly expressed and important for the immunosuppressive function of Tregs in humans and mice. Thus, the benefit of targeting TNFR2 in cancer immunotherapy merits more investigation. A previous report identified a new murine monoclonal anti-TNFR2 antibody (designated TY101), which showed therapeutic efficacy in murine cancer models, but its mechanism of action was less understood. In this study, the capacity of a combination of immunostimulants to enhance the effect of this inhibitor of Tregs was investigated. We examined the efficacy of TY101 as an anti-tumor immune reagent combined with HMGN1 (N1, a dendritic cell activating TLR4 agonist) and R848 (a synthetic TLR7/8 agonist). This immunotherapeutic combination exerted synergistic antitumor effects as compared with any single treatment. The antitumor response was mainly mediated by the depletion of Tregs and stimulation of cytotoxic CD8 T cell activation. The result also suggested that the effect of TY101 was similar to that of anti-PD-L1 when used in combination with these immunostimulants. Therefore, we propose that treatment strategies of antagonizing TNFR2 on Tregs would behave as potent checkpoint inhibitors and can potentially be utilized to develop a novel antitumor immunotherapy.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Anticorpos/imunologia , Neoplasias do Colo/terapia , Proteína HMGN1/metabolismo , Imidazóis/uso terapêutico , Terapia de Imunossupressão/métodos , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Animais , Neoplasias do Colo/imunologia , Feminino , Citometria de Fluxo , Proteína HMGN1/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Linfócitos T Reguladores/imunologia
14.
iScience ; 24(10): 103150, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34646988

RESUMO

Bacillus Calmette-Guerin (BCG) vaccinations improve glycemic control in juvenile-onset Type I diabetes (T1D), an effect driven by restored sugar transport through aerobic glycolysis. In a pilot clinical trial, T1D, but not latent autoimmune diabetes of adults (LADA), exhibited lower blood sugars after multidose BCG. Using a glucose transport assay, monocytes from T1D subjects showed a large stimulation index with BCG exposures; LADA subjects showed minimal BCG-induced sugar responsiveness. Monocytes from T1D, type 2 diabetes (T2D), and non-diabetic controls (NDC) were all responsive in vitro to BCG by augmented sugar utilization. Adults with prior neonatal BCG vaccination show accelerated glucose transport decades later. Finally, in vivo experiments with the NOD mouse (a T1D model) and obese db/db mice (a T2D model) confirm BCG's blood-sugar-lowering and accelerated glucose metabolism with sufficient dosing. Our results suggest that BCG's benefits for glucose metabolism may be broadly applicable to T1D and T2D, but less to LADA.

15.
Sci Rep ; 11(1): 14933, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294806

RESUMO

Induction of immunosuppressive T-regulatory cells (Tregs) is a desirable goal in autoimmunity, and perhaps other immune diseases of activation. One promising avenue is with the bacille-calmette-guérin (BCG) vaccine in autoimmune type 1 diabetes (T1D). Its administration is associated with gradual clinical improvements in human autoimmunity over a 2-3 year post-vaccination period. We hypothesize that those improvements, and their unusually long time course to fully materialize, are partially attributable to BCG's induction of Tregs. Here we report on a 3 year-long longitudinal cohort of T1Ds and examine the mechanism by which Treg induction occurs. Using the Human Infinium Methylation EPIC Bead Chip, we show that BCG vaccination is associated with gradual demethylation of most of 11 signature genes expressed in highly potent Tregs: Foxp3, TNFRSF18, CD25, IKZF2, IKZF4, CTLA4, TNFR2, CD62L, Fas, CD45 and IL2; nine of these 11 genes, by year 3, became demethylated at the majority of CpG sites. The Foxp3 gene was studied in depth. At baseline Foxp3 was over-methylated compared to non-diabetic controls; 3 years after introduction of BCG, 17 of the Foxp3 gene's 22 CpG sites became significantly demethylated including the critical TSDR region. Corresponding mRNA, Treg expansion and clinical improvement supported the significance of the epigenetic DNA changes. Taken together, the findings suggest that BCG has systemic impact on the T cells of the adaptive immune system, and restores immune balance through Treg induction.


Assuntos
Vacina BCG/administração & dosagem , Metilação de DNA , Diabetes Mellitus Tipo 1/genética , Redes Reguladoras de Genes , Linfócitos T Reguladores/imunologia , Adulto , Vacina BCG/imunologia , Estudos de Casos e Controles , Ilhas de CpG , Diabetes Mellitus Tipo 1/imunologia , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Estudos Longitudinais , Análise de Sequência de RNA
16.
Hum Vaccin Immunother ; 17(3): 759-772, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755474

RESUMO

TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.


Assuntos
Doenças Transmissíveis , Vírus Sincicial Respiratório Humano , Animais , Vacina BCG , Humanos , Espanha , Vacinação
17.
Sci Signal ; 13(661)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293464

RESUMO

Regulatory T cells (Treg cells) restrict immune system activity, such as in response to self-antigens, and are switched on by tumor necrosis factor receptor 2 (TNFR2). Therapeutic activation of TNFR2, thereby expanding Treg cells and suppressing immune activity, may be beneficial to patients with various inflammatory diseases. Here, we characterized a new human TNFR2-directed antibody agonist isolated from mice. We found that the antibody agonist expanded the number of Treg cells within cultures of primary human CD4+ T cells from healthy donors and patients with type 1 diabetes or Sézary syndrome. These Treg cells had increased metabolic gene expression and intracellular itaconate concentrations, characteristics associated with maximally suppressive, anti-inflammatory Treg cells. Furthermore, antibody-expanded Treg cells repressed the activity of primary human CD8+ effector T cells (Teff cells). Epitope mapping suggested that the antibody bound to TNFR2 through a natural cross-linking surface and that Treg cell expansion was independent of the antibody Fc region. In addition, Treg cell expansion was not increased by adding either supplemental TNF ligand or a cross-linking reagent, suggesting that the antibody agonist by itself can elicit maximal activity, a notion that was confirmed by increased secretion of soluble TNFR2. Pending in vivo tests, these features indicate that this TNFR2 antibody agonist has the potential to safely and effectively treat various inflammatory disorders.


Assuntos
Anticorpos Antineoplásicos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Proteínas de Neoplasias , Receptores Tipo II do Fator de Necrose Tumoral , Síndrome de Sézary/imunologia , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Linfócitos T Reguladores
18.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32690635

RESUMO

Stealthy intracellular bacterial pathogens are known to establish persistent and sometimes lifelong infections. Some of these pathogens also have a tropism for the reproductive system, thereby increasing the risk of reproductive disease and infertility. To date, the pathogenic mechanism involved remains poorly understood. Here, we demonstrate that Brucella abortus, a notorious reproductive pathogen, has the ability to infect the nonpregnant uterus, sustain infection, and induce inflammatory changes during both acute and chronic stages of infection. In addition, we demonstrated that chronically infected mice had a significantly reduced number of pregnancies compared to naive controls. To investigate the immunologic mechanism responsible for uterine tropism, we explored the role of regulatory T cells (Tregs) in the pathogenesis of Brucella abortus infection. We show that highly suppressive CD4+FOXP3+TNFR2+ Tregs contribute to the persistence of Brucella abortus infection and that inactivation of Tregs with tumor necrosis factor receptor II (TNFR2) antagonistic antibody protected mice by significantly reducing bacterial burden both systemically and within reproductive tissues. These findings support a critical role of Tregs in the pathogenesis of persistence induced by intracellular bacterial pathogens, including B. abortus Results from this study indicate that adverse reproductive outcomes can occur as sequelae of chronic infection in nonpregnant animals and that fine-tuning Treg activity may provide novel immunotherapeutic and prevention strategies against intracellular bacterial infections such as brucellosis.


Assuntos
Brucella abortus/patogenicidade , Brucelose/imunologia , Fertilidade/fisiologia , Complicações Infecciosas na Gravidez/imunologia , Linfócitos T Reguladores/imunologia , Doença Aguda , Animais , Carga Bacteriana , Brucelose/microbiologia , Doença Crônica , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Baço/imunologia , Baço/microbiologia , Baço/patologia , Útero/imunologia , Útero/microbiologia , Útero/patologia
19.
iScience ; 23(5): 101085, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32380424

RESUMO

Myc has emerged as a pivotal transcription factor for four metabolic pathways: aerobic glycolysis, glutaminolysis, polyamine synthesis, and HIF-1α/mTOR. Each of these pathways accelerates the utilization of sugar. The BCG vaccine, a derivative of Mycobacteria-bovis, has been shown to trigger a long-term correction of blood sugar levels to near normal in type 1 diabetics (T1D). Here we reveal the underlying mechanisms behind this beneficial microbe-host interaction. We show that baseline glucose transport is deficient in T1D monocytes but is improved by BCG in vitro and in vivo. We then show, using RNAseq in monocytes and CD4 T cells, that BCG treatment over 56 weeks in humans is associated with upregulation of Myc and activation of nearly two dozen Myc-target genes underlying the four metabolic pathways. This is the first documentation of BCG induction of Myc and its association with systemic blood sugar control in a chronic disease like diabetes.

20.
J Leukoc Biol ; 107(6): 981-991, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32449229

RESUMO

Immune checkpoint inhibitors are profoundly transforming cancer therapy, but response rates vary widely. The efficacy of checkpoint inhibitors, such as anti-programmed death receptor-1 (anti-PD-1), might be increased by combination therapies. TNFR2 has emerged as a new target due to its massive expression on highly immunosuppressive regulatory T cells (Tregs) in the microenvironment and on certain tumor cells. In murine colon cancer models CT26 and MC38, we evaluated the efficacy of a new anti-TNFR2 antibody alone or in combination with anti-PD-1 therapy. Tumor-bearing mice were treated with placebo, anti-PD-1 alone, anti-TNFR2 alone, or combination anti-PD-1 and anti-TNFR2. We found that combination therapy had the greatest efficacy by complete tumor regression and elimination (cure) in 65-70% of animals. The next most effective therapy was anti-TNFR2 alone (20-50% cured), whereas the least effective was anti-PD-1 alone (10-25% cured). The mode of action, according to in vivo and in vitro methods including FACS analysis, was by killing immunosuppressive Tregs in the tumor microenvironment and increasing the ratio of CD8+ T effectors (Teffs) to Tregs. We also found that sequence of antibody delivery altered outcome. The two most effective sequences were simultaneous delivery (70% cured) followed by anti-TNFR2 preceding anti-PD-1 (40% cured), and the least effective was by anti-PD-1 preceding anti-TNFR2 (10% cured). We conclude that anti-PD-1 is best enhanced by simultaneous administration with anti-TNFR2, and anti-TNFR2 alone may be potentially useful strategy for those do not respond to, or cannot tolerate, anti-PD-1 or other checkpoint inhibitors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias do Colo/terapia , Regulação Neoplásica da Expressão Gênica , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/química , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Terapia Combinada/métodos , Esquema de Medicação , Humanos , Imunoterapia/métodos , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...